
The OSF DCE Developers Conference

DCE Success Stories Track

DCE and Legacy Systems -An Experience Report
What Really Happened

By: John Diehl, with Randy Parlier and Timothy
●

California Institute of Technology
Jet Propulsion Laboratory

Graham

,

9

Abstract

The Multimission Ground Data System (MGDS) in use at the
Jet Propulsion Laboratory (JPL) was developed in the latter half
of the 1980s. It was a major departure from the one-of-a-kind,
non-distributed ground data system previous] y employed.
Today, a project is underway to determine if the Distributed
Computing Environment (DCE) has a place in MGDS. The
initial component targeted for replacement is an application
layer built on top of TCP/IP which handles the MGDS message-
passing requirements.

This paper is intended to:

● Share our experience with other DCE developers
● Help other developers understand how DCE can be used

“in the real world
● Share some of the limitations of DCE with other

developers

The research described in this publication was carried out by the
Jet Propulsion Laboratory, California Institute of Technology,
under contract with the National Aeronautics and Space
Administration.

ii

Tabk Of Contents

1 OVERVIEW ...1

●

✌

2 LESSONSLEARN13D ...1
2.1 Reading ...1
2.2 Training ...2
2.3 Sampleapplications ...2

2.3.1 Asatrainingtool ...3
2.3.2 Asadcvelopmenttool. ...3

2.4 Uscavailablcpcoplercsourcc. . ~
2.5 Multi-vendorenvironment ...3

2.5.1 Locationofvendor-spccificerrors. 4
2.5.2 Verification ofimplementation . 4

2.6 Problcmdcscription ...4

3 DATATRANSPORTSUBSYSTEM(lCECREAM) 5

4 DIC E ...7
4.1 IlikeDCE ...7
4.2 DCEIsportablc ...7
4.3 Readyforprimetime ...7

AI’PENDIX ADESCRIPTION OF THELNSAPPLICATION 9
introduction ...9
Description ...9
Administrative Seto”.””””””””’””””””””” ““”” ” ” ” ” ” ” ” ’ ””]0
.BUild Process ...10
Runninc the servcrand cw ...-10

APPENDIX B
SOIJRCEAND MAKEFILES I.lSTINGS FOR THE I,NSAPPLlCATlON. 11

DCE_lns.idl: .-l]
DCE_lns_scrver. c ...12
Makefile.hp . -....26
Makefilc.sun .. -..29
dcletc_clicnt.c ...32
dclctc_logical_nan~ e.c ..,.34
print_clicnt,c ...+. ..c-1~6
print_logical_names. c........ ...-38
registcr_client. c!~g
rcgistcr_logical_ nanle.c41
rcsolve_client. c . 0044

. . .
111

rcsolvc_logical_name. c...c-

APPENDIX C DESCRIPTION OF THE ICE CREAM APPLICATION.
lntmduction
Description
Administrative setup
BU ild Process

unnimz the servcr and cIM

APPENDIX D
SOURCE AND MAKEFILES LISTJNGS

.
Makefilc.hp.
Makcfilc.sun
calories. c
client. c
icc_cream.acf.
icc_crcan~.idl
server. c

. . ..(

.

. ..!.

.

.

.! ..!

. . .

. . .

. . .

. . .

. . .

. 46

. ..!47

. 47

. 47

. 47

. 48

. !.. . 48

J?OR T]]E]CE CREAM A P P L I C A T I O N
.

.

.

.

.

.

.

.’. 4

. .

. .

. .

. .

. .

. .

. .

. .

.

.

.

.

.

.

.

.

, .49
, .49
. .51
. .53
. .54
. . 60
. . 61
. .62

iv

OVERVIEW

In the paper published in the conference proceedings, 1 presented several areas within the
Multi-mission Ground Data System (MGDS) which arc candidates for replacement with
DC13-hascd solutions. Since completing the paper, 1 have concentrated on constructing a
DCE solution to replace the Network Access I.aycr of MGDS. This presentation will focus
on my experience creating a prototype of the replacement.

1 will first present the lessons learned from building this prototype. Next, J will describe the
application which I hope to replace, and the prototype. Finally, 1 will give an evaluation of
DCE as a vehicle for replacing legacy systems.

My ccl] contained the following workstations:

1 Sun Sparcstation 10 .
1 Sun4 Spare
1 Hewlett-Packard 725/50

LESSONS LEARNED

Did I Ever!

I have been involved in data processing since the early 1970s. In 1972 Burroughs
Corporation hired me to perform operating systems’ maintenance. Since then 1 have been
working in the data processing field, and have seen many innovations flourish and fold. 1
have learned many lessons the hard way. Still, all this experience did not protect mc from
learning, yet again, several more lessons the hard way. Simultaneously I think my
cxpcriencc did allow mc to do smnc right things the right way.

2.1 Reading

1 feel compelled to parrot the words of the knowlcdgcablc people with whom 1 discussed
DCE:

“Read the two O’Reilly books: Understanding DCE, by Ward Rosenbcrry, David
Kenncy and Gerry Fisher, and Guide to Writing DC EApplication.v, by John Shirley.”

To which I add: after you read them, do the cxamp]c applications,

DCE is a complex system. You need all the help you can get to understand the services
offered and how to use the scrviccs to obtain results. These two books can provide a firm
base from which to explore DCE. Even now, I return to these books to find out about a
“new” idea or capability that I have just discovered.

A new book published by McGrawHill which I am just now beginning to use is (2.$F DC’E
Guide to Developing IIistrihuted Applications, by Harold W. Lockhart,

The first two books are an “easy” read. The last book is larger, and 1 am finding it useful
for learning more about the topics introduced in the O’Reilly books.

2.2 Training

This is onc thing I mostly did right. Before undertaking to set up anything using IX%, I
would recommend getting as much training as possible. 1 took a three-day class from
TRANSARC and attended a series of Tutorials/Workshops offered at the SHARE
conference in Anaheim, California. The benefits of training would have been even greater
if 1 had even more training, especially of the hands-on variety. TRANSARC’S class was
lccturc only. The SHARE conference included a two-hour hands-on session which was
cxtrcmcly useful. Hewlett-Packard offers a one-week hands-on class which, bccausc of my
own schedule, J was unable to attend. I ruc that schedule conflict, In retrospect, 1 would
have bcncfittcd by traveling to the class rather than waiting for it to bc offered locally.

1 spread my training over two or three months. When 1 was not in training classes, I
speculated about how my replacement systcm might look. I did not start work on it until
after the paper was submitted early in July. During this time I was busy collecting my
sample applications and reading.

2.3 Sample applications

Work the sample application in the texts. I found that differences in the vendor products
made the applications as presented lCSS than robust, 1 am not a true UNIX programmer, so
1 found the incompatibilities in the Makcfilcs especially trying. However, once 1 had done
the cxamp]cs and had prevailed in creating workable Makcfilcs, I reduced the challcngc of
creating my own application. It would have been far more difficult to crcatc a working
application had I needed to cover all the ground on a new, untested piccc of software.

The Hewlett-Packard DCE package included a set of thirteen (13) sample applications.
These came with documentation which was very helpful in learning about DC13. HP heavily
docurncntcd their sample application code; this was a real boon when J was building my
prototype application. Of course the O’Reilly sample applications come with the book, and
are equally easy to understand.

As time goes by, 1 am adding to the sample application list. The application I will discuss
later is now part of my sample application suite.

2

2.3.1 As a training tool

About six months after I began working on DCE, a different organization hired two people
to explore DCE. As part of my outreach program at JPI., 1 helped bring these individuals
up to speed. They began by reading the O’Reilly books; they then worked the sample
application provided in these books and by Hewlett-Packard. They completed this training
and built two working application in less than three (3) months. I believe the sample
applications were a key ingredient of their success.

J would point out that not all the sample applications work. When these two individuals
joined the team, about six (6) of the applications worked.
applications I have, 15 work on both platforms and 18 work on

2.3.2 As a development tool

As I said, HP heavily documented their sample applications.

Now, of the 20 sample
at least one platform.

As 1 was developing my
applications, I found it very useful to find a similar application in the samples. I would usc
these samples as the basis for constructing my “new” application. My prototype application
was too unique for plagiarism, but I still used the sample applications as sources for
information on which calling sequences to USC.

Having these sample applications saved many hours of work.

2.4 Usc available people resource

Others who are knowledgeable about DCE arc an excellent resource; even individuals who
know only the barest minimum about DCE -- they have read the books -- can understand
what you arc trying to do, They can provide insight into your own problems and help you
reach your goal more quickly.

People with minimum knowledge who merely listened to mc were very useful. 1 also relied
heavily on the two people, mentioned above, who worked in the other organization. Wc
provided mutual support.

2.5 Multi-vendor environment

Another advantage J had in developing my application was a multi-vendor environment.
This helped separate system problems from application problems.

When 1 had a failure on one vendor’s implementation, I would take the application to the
other vendor’s platform and try it there. Iiach implementation had its strengths and
weakness. Often a “core file” on one system resulted in an error message on the other. The

3

2.5.1

2.5.2

2.6

error message usually led to a discovery of parameter errors which would have been difficult
to find manually. I also used my sample applications to dccidc if the call I was using was
correct.

As onc of my sponsors aptly put it: “Somctin~es value added is not always valuable.”

Another advantage was the fact that HP had implemented the cdsbrowscr while
TRANSARC had not. I began by using the cdscp and rpccp commands to monitor my
application. The cdsbrowser man page states that the capabilities in the browser arc
available using cdscp. However, there was a wealth of information about the servers which
I was unable access using these programs. The same information was ready to hand using
the cdsbrowser. The cdsbrowser would have been lCSS useful outside a “DC13” environment.
In a ccl] it dots not matter which node you are on, so I could run the cdsbrowscr on the HP
node and view the CDS on the Sun server. Exccllcnt!

Location of vendor-specific errors

The only error I succecdcd in isolating and repeating was in the rpc_string_binding_parse.
The documentation states that you may specify NULL as an address parameter and the
routine will not return the value. Not in the HP and TRANSARC imp]cmcntations. Both
versions produce a core file when this is attempted. Eventually, 1 simply requested all the
values and ignored the ones I did not need.

Verification of implementation

As 1 mentioned, I used the multi-vendor environment to test-verify the portability of the
implementation. The portability of the application aided in timely completion of the
prototype.

Problcm description

1 spent a great deal of analysis time trying to dcscribc my application to other people. This
was necessary as I worked through my failures, but was fairly frustrating since cvcryonc
seems to have their own definitions of network-related terms. It was not until I stumbled
across a familiar paradigm to describe the problcm that I was able to SOIVC it.

My advice: if you find yourself (as I did) spending too much time describing the problcm
to others, spend some time trying to come up with a more familiar example of what you are
trying to do.

4’

3 DATA TRANSPORT SUBSYSTEM (ICE CREAM)

So, what was I trying to prototype?

The Data Transport Subsystcm (DTS) provides Network services to the applications within
MGDS. The specific service I targeted was the ability to deliver a stream of data from one
application to another. DTS provides this service by first having the originating application
“open” a DTS virtual circuit. When the destination application opens the same virtual
circuit, DTS establishes a connection and the originating application “sends” data to the
destination application which “reads” the incoming data. Of course this is a bare-bones
description, but it is about as complex as 1 want to get here. Besides the application
software, DTS makes use of a Logical Name Server (LNS) which is used by DTS to resolve
the name of the virtual circuit to an endpoint. 1 should also point out that the life span of a
virtual circuit is finite, Once a virtual circuit is created, it can last for anywhere from
minutes to hours.

I soon pictured each virtual circuit as a service, but quickly realized that DCE was not built
to allow a large volume of servers to bc created and destroyed on the fly. So, 1 decided to
use IDL to describe the DTS interface. 1 have represented the DTS as delivering a stream
of data. In actuality, the stream is made up of component parts called standard formatted
data units (sfdus). These are easy to describe in”IDL and so the description of the interface
is easy.

In the parlance of the text books, I wanted to create a service that could be offered by many
servers, and I wanted to allow my client to select the specific instance of the server it
wanted. This led to a several-day task searching for a way to use object uuids in DCE. Now
that 1 have done this, it is obvious, but the long and winding trail lead to frustration as I tried
to describe my application to others. At this point 1 hit upon the idea of describing my
application as Ice Cream.

Assume you arc Ben&Jcrry’sTM. You have many icc cream flavors, but the intcrfacc to each
is pretty much the same. There are characteristics of each flavor which make it unique, but
all the flavors share some common traits. 1 decided to implement Icc Cream as a set of
servers, where each server is running for a specific flavor. The attribute I chose to supply
to my ice cream clients was the number of calories pcr serving.

To relate this to my application, each flavor was a virtual circuit. The number of calories
pcr serving was the stream of data. I had earlier dcvclopcd and tested an interface which did
supply a stream of data using DCE, so 1 was not concerncxl about gcncrali zing the Icc Crcarn
prototype to the DTS prototype.

5

There are actually two applications which make Up the Ice Cream prototype. The I.ogical
Name Service (LNS) application maintains a database of the flavors. LNS allows a server
to register a flavor and returns an object uuid to the server. LNS also allows an ICC Cream
client process to determine the object uuid which has been associated with a particular
flavor. The second application is Ice Cream itself.

Appendix A contains a description of the LNS application. Appendix B contains the listings
of the source and makcfiles for the LNS application. Appendix C contains a description of
the Ice Cream application. Appendix D contains listings of the source and makcfiles for the
ICC Cream application.

I discovered four things in the crunch to create this prototype in time for the confcrcncc:

1) You can use Object UUIDS to distinguish bctwccn different servers offering
the same service.

2) You can include code in your application thal will guarantee only one server
is offering your specific scrvicc.

3) You can include code in your application that cleans up the CDS when your
application stops.

4) You can include code in your application to verify that an entry in the CDS
is a valid server.

Items 3) and 4) were important to me since my application can have services come and go
quickly. Ensuring that the named service I was offering was not a duplicate was critical to
ensuring that my DTS prototype would bc accepted.

All the example progams arc heavily instrumented with calls to puts ancl printf. This is
probably overdone, but 1 found overdoing better than underdoing, in this case.

J would also like to point out that toward the end of my effort, I discovered that the LNS
application may not bc necessary. It is possible to usc the rpc. ns_binding_export to place
object uuids in the CDS. I did not have sufficcnt time to verify that before the conference.

6

4 DCE

1am an easy sell; 1 believe what 1 read. DC13 as a concept was hard to resist. So how do I
feel some six months later?

4,1 1 like DCE

1 was impressed by the fact that once I started to work on programming my application, it
took me only 80 hours to finish it. This included the time required to learn that trying to
describe the actual application was not very productive. I learned that lesson when I
changed to the Ice Cream paradigm.

4.2 DCE IS portable

Usually, if 1 could run an application on one type of hardware, 1 could run the same
application anywhere in the cell. The exceptions arc the result lack of time to port the
dreaded Makcfiles. As I stated earlier this is not really difficult; it simply is not where my
interest lies.

4.3 Ready for prime time

After three months on the job, 1 began using the line: “It will bc reasonable to plan to deploy
a DCE-based application during 1996.” By that I mean that DCE as a product will bc more
stable after it has more releases under its belt and more application progran~mers are
available who have used it, if only in a prototype environment.

I pretty much stand behind that statement today. However, depending on the size of the
application and the number of programmers you are planning to USC, I think the time to stiirt
planning the 1996 deployment is probably past.

7

<flhis Page Intentionally Left Blank>>

8

APPENDIX A
DESCRIPTION OF THE LNS APPLICATION

Introduction

This appendix dcscribcs the logicaJ name server (Ins) application. It discusses how to build and run
it, and what administrative setup is required to run it. It is assumed that you already have a properly
configured and running DCE on the node(s) on which you run this sample application.

Dcscrintion

The LNS application provides a data
code segments in Appendix B contain
bc used to exercise the LNS server.

base which relates logical names with an object uuid. The
the server code and several pieces of client code which can

The LNS server verifies that no other LNS server is running in the ccl] before it starts. If an entry
exists in the CDS for the LNS server, the LNS server checks to see if the other server is running by
using the rpc_mgmt_is_server_li stcning call. If the other server is running, the server terminates.

The LNS server includes signal-handling code. When the server intercepts a signal it will unregister
its binding handles and endpoints before terminating. This makes it easier on the program when it
is restarted.

Once it is running, the LNS server supports the following functions:

rcgister_logical_namc creates an entry in the logical name table which relates the
user supplied logical name with an object uuid which is
generated by the LNS server. This function returns the object
uuid to the caller.

resolvc_logical_nanle looks for the user-supplied logical name in the logical name

dclctc_logical_name

print_ logical_names

table. If the logical name is found, the LNS server returns the
corresponding object uuid. If the user-supplied name dots
not exist in the logical name table, the LNS server returns a
non-zero status and a nil object uuid.

looks for the user-supplied logical name in the logical name table.
If the logical name is found, the LNS server clears the logical name
table entry and returns a zero status code. If the logical name is not
found, the LNS server returns a non-zero status code.

prints a list of the registered logical names on stdout out for the
server. (This is largely useful in testing the server.)

9

Each of these server functions is coded in its own c file.

The samples include source code for the following client programs:

registcr_clicnt registers a logical name with the LNS server. Upon successful con~PlctionJ
the program prints the returned object uuid.

rcsolvc_client uses the LNS server to resolve a logical name to an object uuid.
Upon successful completion, the program prints the object uuid
associated with the logical name.

print_client Causes the LNS server to print a list of the logical names and their
associated object uuid on the server stdout.

Administrative Setup

The LNS server uses the environment variable RPC. DEFAULT-.ENTRY to identify the directory
in which it registers its endpoints.

Build Process

This sample comes with two makefiles: Makefilc.hp and Makcfilc.sun. Makefilc.hp should be used
on HP platforms; it places the executablcs in the hp subdirectory. Makcfile.sun should be used on
Sun platforms; it places the executable in the sun subdirectory.

The flag -DTRACING is defined by default in the makcfiles. Turning this flag off will greally
reduce the number of displays printed by the LNS server.

Running the servcr and clienh

To start the server enter:

<MACHTYPE>/DCE_lns._scrvcr

Each of the supplied client programs can be started in the same way.

10

.

APPENDIX B
SOURCE AND MAKEFILES LISTINGS FOR THE LNS APPLICATION

DCE_lns.idl:

/* File Name: DCE_lns.idl */

/* Purpose: Define the LNS interface id]. */
[
uuid(09735cOc-8 d19- 11 cd-bc6f-080009786 a45),
vcrsion(l .0)
1
intcrfacc DCE_lns
{

const unsigncd32 max_name_lcngth = 1024;

typedef [string, ref] char logical_namc_t[max_namc_lcngth];

uuid_t rcgister_logical_name (
[in] logical_name_t logical_namc,
[out] crror_status_t *call-_status

);

uuid_t resolve_logical_namc (
[in] logical_nanlc_t logical_namc,

[out] crror_status._t *call_ status
);

void print_logical_names ();

void dclcte_logical_nanle (
[in] logical_name_J logical_name,
[out] error_status_t *call_ status

);

DCE_lns_server.c

/* FJLE NAME: DcE_]~s_s~~v~~e~ *J

/* Purpose: The DCE_lns_server provides the services necessary to create */
/* logical names, delete logical names and to relate *I
J* logical names to a specific DCE server. *J

#ifdcf TRANSARC
#include <syshnachsig.h>
#cmdif /* TRANSARC */

#include <signal.h>
#includc epthread.h> /* POSIX threads facility */
#include <unistd.h> /* Standard POSIX defines */
#include <stdlib.h> /* Standard POSIX defines */
#include estring,h> /* str*() routines */
#include <stdio.h>
i n c l u d e <dce/dce_error.h>
#include <dcc/rpccxc.h>
#include <dce/uuid.h>
#include “DCE_lns.h”
#include “check_status.h”

#define MAX_LOGICAL_NAMES 100
#define ANNOTATION_LENGTH 050

p

* This server is a threaded process. To properly handle user-generated
* (asynchronous) Signa]s we spawn a new thread that will use the sigwaito

* CMA routine to await the receipt of an asynchronous signal. When such a
* signal comes in, the server is made to shut down gracefully.
*J

pthread_addr_t sigcatch(pthread_addr_t arg);

struct lnt_entry {
logical_name_t user_logical_nanm;
uuid_t logical_namc_object;
int user_count;

] lnt_tablc_cntry [MAX_LOGICAL_NAMES];

12

main ()
{

char annotation [ANNOTATION_ LENGTH]; /* Annotation for server */
rpc_binding_handlc_t binding_handle; /* refers to another server */
rpc_binding_vcctor_t *binding_vector; /*set of binding handles(rpcbase. h)*/
unsigned_char_t *entry_name; /*entry name for name service (lbase.h)*/
char *gctenvo;
int “$1,
rpc_ns_handlc_t import_contcxt; /* used to disambiguate the name server*/
boolean32 m atch_found; /* Used to locate duplicate servers */
pthrcad_t sig_thrcad; /* thread Id of signal handler */
unsigned32 status; /* error status (nbase.h) */
ndr_char * string_ binding; /* used to create binding */
unsigned32 _ignore; /* error status (nbasc.h) */

/* initialize table. */
for (i = O; i <= MAX_LOGICAL_NAMES; i++)
{

strncpy ((char *) &lnt_tablc_entry [i].user__logical_name, “ “, 1);
uuid_.crcate_nil (

&lnt_table_entry [i].logical_name.. object,
&status);

lnt_tablc_entry [i].user_count = O;
}

13

/* pthread_createo --
*

* Create a new thread to perform asynchronous signal handling. The
* pthrcad_creatc call spawns a new thread of execution within this
* process. The first paramter is the address of’ the thread information
* data structure; pthread_ create will fill this in as a result
* paramtcr. The second paramter is the attributes to be used when
* creating the new thread; the defaults are fine in this case. The
* third paramter is the name of the function to call when the new
* thread has been created; when this function returns the thread will
* tcrnlinate. The fourth paramter is used to pass information to the

* thread routine; the sigcatch routine does not need any additional
* information, so a NULL pointer is passed in.
*/

if (pthrcad_create(&sig_thread, pthrcad_attr_.default, sigcatch, O) < O) {
/* pcrroro --

*

* Print an error message using the string passed in and the current
* value of the global UNIX error value, errno. The pthread_crcate
* call will set errno if it fails.
*}

pcrror(’’Cannot start signal catching thread”);
} else{

I* pthrcad_yicldo --
*
* Force a context switch from this thread to another. In this case
* there is only the one other thread, the one just spawned. Yield
* here to allow the signal thread to set itself up before resuming
* with registration of the server,
*

* NOTE: This does not guarantee that the signal catching thread
* will run until it blocks (until the sigwaito call, see below).
*/

pthrcad_yicldo;
}

#ifdcf TRACING
printf(’’Thread id = %i.\n”, sig_thread);

#cndif /* TRACING */

14

/* rpc_servcr_use_all_protseqso --
*

* Specify that the RPC runtime should use all protocol sequences for
* this application (both UDP/IP and TCP/IP are currently supported).
* This allows the client the flexibility of choosing whichever protocol
* sequence it prefers; it also uses more system resources on the server
* but that’s OK for purposes of demonstration.
*

* The first parameter specifics the maximum number of concurrent remote
* procedure call requests that the server can accept, This server
* wishes to allow only 1 call at a time. The second parameter is the DCE
* error status.
*J

#ifdcf TRACING
puts(’’Requesting all protocol sequences (rpc_ servcr_use_all_.protscqs) . . . “);

#cndif /* TRACING */

rpc_servcr__use_al l_protseqs(/* create binding information */
1,
&status

);
CHECK_ STATUS(status,

/* rpc_scrver_registcr_if
*

/* cpeue size for calls= 1 */

“Can’t create binding information”, ABORT);

* Register the interface definition and manager entry point vector with
* the RPC runtime. This application does not usc type UUIDS (an
* advanced feature) so specify a nil manager type UUJD.
*J

#ifdcf TRACING
puts(’’Registcring interface (rpc_server_registcr_.if) . ..”).

#cndif /* TRAC]NG */

rpc_scrvcr_rcgister_if(/* register interface with the RPC runtimc */
DCE_lns_vl_O_s_ifspec, /* interface specification (DCE_lns.h) */
NULL, /* No type uuid */
NULL, /* Usc default end point manager*/
&status /* error status */

);
CH13CK_STATUS(status, “Can’t register intcrfaceh”, ABORT);

15

/ * rpc_server_inq_bindings
*

* Get the bindings handles. The binding information (binding
* vector return argument binding_vcctor) is required for registration
* with the endpoint mapper and the name service.
*J

#ifdcf TRACING
puts(’’Obtaining server binding information (rpc.-server–inq-bindings)... “);

#cndif /* TRACING */

rpc_server_inq_bindings(/* obtain this server’s binding inforn~ation */
&binding_vector,
&status

);
CHECK_STATUS(status, “Can’t get binding information”, ABORT);

#ifdcf TRACING
p+.

* Print out the bindings obtained from the RPC runtimc. This info is
* only for debugging purposes -- it shows what protocol sequence and
* ports have been grabbed by the runtime for this server.
*/

puts(’’Bindings:h”);
for (i = O; i < binding_vector->count; i++) {

/* Convert binding handle to a string */
~c_binding_to._string_binding(binding__vector->binding_h[il,

&string_binding,
&status); /* error status for this call */

CHECK_STATUS(status, “Cannot get string binding: “, RESUME);
printf(” %An”, string_binding);
/* Free string binding. */
rpc_string_free(&string_binding, &–ignore);

}
#cndif I* TRACING *J

/* Establish entry name value */
entry_name = (unsigned_char_l *)getenv(’’RPC-DEFAULT_ENTRY”);

16

* Here is were we will handle the elimination of duplicate servers and/or
* avoid becoming a duplicate server on this node.
*/

/*

* The following code contacts the directory to determine if this server
* is currently registered in the name space. This server’s host may
* have crashed, leaving bindings in CDS but no server actually running
* (and no entry in the endpoint mapper). Or there may be another
* server for this interface actually mnning. The code below will

* distinguish between these two cases and do the appropriate thing: if
* another server is actually running, this one will exit.
*/

rpc_ns_binding_impoti_bcgin(rpc_.c_ns_syntax-dcfault,
(unsigncd_char_t *)cntry_nan~e,
DCE_lns_v 1 _O_s_ifspcc, /* interface specification

(DCE_lns.h) “/
N(JLL, /* No object UUID used */
&import_contcxt,
&status); /* error status for this call */

/*
* If the import was successful then there are bindings in CDS for this
* interface. So search through the binding handles in the CDS to SCC

* if there is binding information for a server on this host.
*j

for (rpc_ns_binding_import_next(import-context, &binding..handlc, &status);
(status == rpc_s_ok) && (match_found == false);

rpc_ns_binding_import_next(import-context, &binding–handlct &status)) {
/+
* With this CDS binding handle loop through and check all this
* server’s bindings handles (all its protocol towers).
*J

for (i = O; i < binding_vector->count; i+-+) {
/+

* The binding handle returned from the name server matches
* a binding handle we received from the RPC runtime -- the

* CDS entry refers to a binding on this host. Now wc must
* check to see if there is a server running on the other
* end of this binding handle or if it is a stale CDS entry.
*I

/* rpc_ep_resolve_bindingo --
*

* Resolve the partially bound server binding handle into a fully bound
* server binding handle. This will add the endpoint information for the
* server to the binding handle. A fully bound server binding handle is
* required by rpc_mgn~t_is_server_listening, called below.
*

* The first paramtcr is the binding handle to resolve. It is an [in,out]
* paramter to this call. The second parameter identifies the interface
* whose endpoint is of interest. The final paramter is the DC13 error status.
*j

rpc_ep_resolve_ binding(binding_handle,
DCE_lns_vl _O_s_ifspcc,/* interface specification (DCE_lns.h) */
&status);

if (status != rpc_s_ok) {
J*

* Then there was something wrong with the binding
* handle. We cannot reuse it; keep trying.
*/

CHECK_STATUS(status, “Tried to resolve a binding and got: “, RESUME);
} else {

/* rpc_mgmt_is_server_listcningo --
*

* Determine if the server on the other end of this binding handle is
* listening for remote procedure calls. This should return quickly --
* i.e., it should not cause an RPC timeout or a DCE exception if there
* is no server on the other end.
*

* The first paramter is a server binding handle for the server of interest.
* The last paramter is the DCE error status. The routine returns true if
* there is a server listening or false if no server is there (or if something
* else went wrong).
*I

if (rpc_mgmt_.is_scrver_listening(binding_handlc, &SUUUS) == truc) {
J*

* We found a valid binding handle! There is a server for this interface
* currently running on this host. Record this fact and stop checking.
*J

match_found = true;
break;

} else{
CHECK_STATUS(status, “Checked if server listening and got: “,

RESUME);
}/* else */

.

)/* else binding not resolved */
J*

* Make sure to free the binding handle allocated for us by
* rpc._ns_binding_import_ nexto above.
*f

rpc_binding_frec(&binding_handle, &_ignore);
}/* for all this server’s binding handles */

}/* for all bindings for this interface in CDS */

p

* Close down the association with the name server: free the space
* allocated for the import context, Ignore the return value.
*J

rpc_ns_binding_import_done(&import_contcxt, &_ignore);
if (match_found == true) {

/*

* Then a server for this interface is already running on this host,
* For this application, there should only be one server per host.
* Print out a message and terminate this server.
*f

rpc__scrver_unregister_if(/* Unregister intcrfacc */
DCE_lns_v l_O_s_ifspcc, /* interface specification

(DC13_lns.h) “/
NULL, /*No object UUID. */
& ignore); /* ignore any errors */

puts(”A LNS server is al~eady running in this cell! Exiting,\n”);
exit(l);

);
/*

* No matching binding handle was found. Do all the work required
* to register this server with the endpoint mapper and CDS.
+/

19

/* rpc_ep_rcgister
*

* Register the interface with the local endpoint mapper. This allows connections
* by applications using this interface without specifying a port (i.e., using a
* partially-bound binding handle).
*
*J

strcpy(annotation, “Logical Name Server”);
rpc_ep_register(I*

DCE_lns_.v 1 _O_s_ifspec, /*

binding_vcctor, /*

NULL, J*

(unsigncd_char_t *annotation, /*
&status

);
CHECK_ STATUS(status, “Can’t add

#ifdcf TRACING

register endpoints in local endpoint map */
interface specification (DCE_lns.h) */

the set of server binding handles *I

No object UUID *f

Annotation for these binding vectors */

address to the endpoint mapb”, ABORT);

puts(’’Exporting entry to name service data base (rpc_ns_binding_ export) . ..”).
#cndif /* TRACING */

/* rpc_.ns_binding_exporto --
*

* Export the binding vector and interface specification to the name
* server. Register in the name service under the host-specific entry
* name just computed above. The first parameter is the syntax to use;
* in the first release of DCE there is only one supported syntax. The
* second parameter is the entry name to look under; it was created
* above, The third parameter is the server interface specification,
* with the UUJD from the]DL file. The fourth parameter is used tO

* specify an object UUID if the server exports multiple objects; this
* server does not export multiple objects, so NULL is used.
*
+/

rpc_ns_binding_export(
rpc_c_ns_syntax_default,
cntry_name,
DCE_lns_v l_O_s_ifspcc,
binding_vector,
NULL,
&status

);
CHECK_STATUS(status,

export entry to name service database */
/* syntax of the entry name (rpcbase.h) */

entry name for name service */
interface specification (DCE_lns.h) */
the set of server binding handles */
No object UUID */
error status for this call */

“Can’t export to name service databascb”, ABORT);

20

J*

* Wrap the server listen call with a TRY block to catch any exceptions
* raised by the RPC server runtime. In addition if an asynchronous
* signal is received (by the sigwait thread) the listen will be
* terminated via the rpc_mgmt_ interface.
*J

TRY {
puts(’’Listcning for remote procedure calls...”);
/*

* Listen and handle incoming RPC requests. The manager function
* will be called from the server stub to handle each incoming RPC.
* The manager must be reentrant since up to max_calls_default
* threads can be executing that code simu]tancously. The listen
* typically will return only when the appropriate rpc_mgmt_
* function is called by the sigwait thread below.
*J

rpc_server_listen(/* listen for remote calls */
1, /*concurrent calls to server (rpcbasc.h)*/
&status

);
CHECK_STATUS(status, “Listen returned with error: %An”, RESUME);
puts(’’Stopped listening...\n”);

} FINALLY{
/*
* Remove this server from the namespace, including from any profile
* or groups it’s registered in. Also unexport the bindings and
* unregister the endpoints with the RPC runtimc.
*

* NOTE: Not all servers will want to unregister from the name
* service. If the server is expected to come up again right away
* it makes more sense to leave the server entries in CDS. However
* if the server is only running now and again the entry should be
* removed so clients do not try to contact a server that is no
* longer listening for requests.
*J

#ifdcf TRACING
puts(’’Unregistering from NSI...\n”);

#cndif /* TRACING */

21

/*

* Unrcgister this service from the namcspace.
+/

rpc_ns_binding_unexport(rpc_c_ns_syntax_default, /* default syntax */
entry_nanlc,

DCE_lns_vl _O_s.lfspcc~* interface specification (DCE-lnS.h) */
NULL, /* No object UUID */
&__ignore); /* ignore any errors */

#ifdef TRACING
puts(“Unregistering endpoints and interface...\n”);

#endif /* TRACING */
/+

* Unrcgister the interface and endpoints with the RPC runtimc.
*/

rpc_ep_unregistcr(
DCE_lns_vl_O_s_ifspec,/* interface specification (I~CE.lns.h) */

binding_vcctor, I* this server’s bindings *1
NULL, /*no object UUIDS supported */
&status); /* ignore any errors */

CHECK_STATUS(status, “Endpoint unregistcr failed: “, RESUME);

rpc_scrver_.unregister_if(
DCE_lns_vl_O_s_ifspcc,/* interface specification (DCE_lns.h) */

NULL, /* No object UUID. */
&status); /* ignore any errors */

CHECK_STATUS(status, “Interface unregister failed: “, RESUME);

/* rpc_binding_vector_free
*

* We are done with the binding_vector so we can free the space.
*J

rpc_binding_vector_frec(/* free set of server binding handles */
&binding_vcctor,
&status

);
CHECK_STATUS(status, “Can’t free binding handles and vector\n”, ABORT);

1

22

ENDTRY;
/*

* We got here either because the server was told to stop listening or
* an exception was raised. Some manager functions may still be running

* in separate threads. A robust server should either wait for these
* threads to complete gracefully or tell them to terminate (cancel).
+/

exit(O);
}

p sigcatcho --
*

* Catch and handle asynchronous signals for the server. This function runs
* in a separate thread. It awaits rcccipt of an asynchronous signal using
* the CMA sigwait call. When onc of the signals this thread is waiting for
* is rcccivcd by the process this thread will bc schcdulcd, It then tells
* the server to stop listening, causing the RPC runtimc to return from the
* rpc_server listeno routine once all the currently running RPC have
* comp]cted~ This thread then exits. When ~C_SCrvCr_lktHlo returns the

* server cleans up its entries from the name space and then exits.
*/

pthrcad_addr_t sigcatch(pthread_addr_t arg)
{

sigsct_t mask; /* signal values to wait for*/
int signo; /* actual signal received */
unsigncd32 status; /* returned by DCE calls */
crror_status_t _ignore; /* returned by DCE calls */

#ifdcf TRACING
puts(’’Entering signal handling thread.”);

#cndif /* TRACING */

/* sigcmptyscto --
*

* initialize the signal set pointed to by the first parameter. When
* initialized the mask includes no signals. Use sigaddseto below to
* add individual signals to the mask, The mask is used to tcl]

* sigwaito which signals to wait for. Any other signals will bc
* ignored.
*J

#ifdcf TRACING
puts(’’Calling sigemptyset.”);

#cndif /* TRACING */

23

if(sigcmptyset(&m ask)<O)
pcrror(’’sigemptyset failed”);

/* sigaddseto --
*

* Add a signal value to a signal mask. The first parameter is the mask
* which should have been initialized at some point. The second
* parameter is a signal number which is to be added to the signal mask.
* The mask parameter is modified to include the signal and returned,
*/

if(sigaddset(&mask, SIGHUP)CO)
perror(’’sigaddset 1 failed”);

if(sigaddset(&mask, SIGINT)<O)
pcrror(’’sigaddset 2 failed”);

if(sigaddset(&mask, SIGTERM)<O)
pcrror(’’sigaddsct 3 failed”);

#ifdcf _POSIX_SOURCE
/*
* POSIX defines the following user-defined signals. They are also
* listed as process-terminating asynchronous signals, so make sure to
* catch them. There are other process-terminating signals your
* application may need to catch as well, including SIGALRM, SIGPROF,
* SIGDIL, SIGLOST.
*

* The asynchronous non-terminating signals SIGCONT, SJGPWR and SIGWINDOW
* can also be caught if desired, but should not cause server process
* termination.
*I

if(sigaddset(&mask, SIGUSRI)<0)
pcrror(’’sigaddset 4 failed”);

if(sigaddset(&mask, SIGUSR2)<O)
pcrror(’’sigaddset 5 failed”);

#cndif /* _POSIX_SOURCE */

24

/* sigwaito --
*

* Wait for the receipt of a signal (block this thread). The first
* argument is the signal mask created above. Only those signal values
* included in the mask will be waited for. Any other signals will be
* ignored (will cause process termination or whatever their behavior is
* defined to be).
*

* If no threads were sigwaitoing for the asynchronous signals defined
* in the mask above and such’ a signal were received, the process would
* dic immediately without giving the server a chance to unregister its
* bindings with the endpoint mapper. Using sigwaito is the only way
* to catch these asynchronous signals and have the opportunity to clean
* up before exiting.
*1

#ifdef TRACING
puts(’’waiting for a signal,”);

#cndif /* TRACING */

signo = sigwait(&mask);
printf(’’Signal %d received! Cleaning up...\n”, signo);

/* rpc_mgmt_stop_server_listeningo --
*

* Stop the server from listening for more RPC requests. The first
* parameter is a binding handle indicating the server which should stop
* listening; a NULL value for this parameter means to stop this server
* from listening. The final parameter is the DCE error status.
*

* This call causes the server i-untime to exit from rpc_scrver_listcno
* after all currently active RPCS run to completion. Note that no more
* RPCS will be received once the rpc_server_listcno terminates. If
* any currently active RPCS don’t complete in a timely manner, another
* signal will kill the server since we will no longer have a thread to
* catch asynchronous signals!
*/

rpc_mgmt_stop_server_listening(NULL, &status);
#ifdcf TRACING

puts(’’checking return code.\n”);
#cndif /* TRACING */

CH13CK_STATUS(status, “rpc-_mgmt_stop_s crver error:”, RESUME);
}

25

Makcfilc.hp

FILE NAME: Makefilc.hp
#
#HP Makefile for the DCE implementation of LNS
#
definitions for this make file
#
MACH = hp

DEBUG = -t?
INCENV = -1. -I.. -Uusr/include/reentrant
ANSI_FLAGS = -Aa -D_POSIX_SOURCE
HP.FLAGS = -D_REENTRANT -DTRACING

CFLAGS = ${ DEBUG} ${ ANSI_FLAGS} ${ HP..FLAGS } ${ INCENV)
LDFLAGS = ${ DEBUG } -Wl,-a,archive
L113S = -lbb -Idce -Im -lc_r

PROGRAMS = $(MACH)/DCE_lns_servcr \
$(MACH)/register_clicnt \
$(MACH)/print_client \
$(MACH)/resolve_client \
$(MACH)/dclete_client

server-. OFILES = DCE_lns_sstub.o DCE_lns_server.o

lDL_SOURCE = DCE_lns.idl
HEADERS = DCE_lns.h
C.. SOURCE = DCE_lns_sstub.c DCE_lns_cstub.c
DCE_OBJECTS = DCE_lns_sstub.o DCE_lns_cstub.o
DCE_PROCEDURES = register-.logical_name.o \

resolve_logical_name.o \
print_logical_nanles.o \
delete_logical_name.o

DCE_PROCEDURES_SOURCE = register_logical_ nanle.c \
print_logical_namcs.c

IDLCMD = idl -v -cc_opt -D_TIMESPEC-.T_

cc = cc

26

#
COMPLETE BUILD of the application
#
all: local ${ PROGRAMS }

#
Clean
#
clean:

rm -f *.o hp/* DCE_lns_sstub.c DCE_lns_-cstub.c DCE_lns.h

#
LOCAL BUILD of the client application to test locally
#
local: interface register_client.c register_logical_name.c

$ (C C) $(CFLAGS) -DLOCAL -o $(MACH)/local_register \
register_client,c \
register_logical_name.c \
$(LIBS)

$(CC) $(CFLAGS) -DLOCAL -o $(MACH)llocal-print \
print_client.c \
print_logical_names.c \
$(LIBS)

$(cc) $(cFLAGS) -DLOCAL -O $(MACH)/local_resolve \
resolve_client.c \
resolve_logical_namc.c \
$(LIBS)

$(cc) $(cFLAGS) -DLOCAL -o $(MACH)/local_delete \
delete_client.c \
delete_logical_name.c \
$(LIBS)

#
INTERFACE BUILD
#
interface: $(DCE_OBJECTS) $(DCE_PROCEDURES)

$(DCE_OBJECTS): $(IDI--SOURCE)
$(IDLCMD) $(IDL_SOURCE)

27

$(DCE_PROCEDURES) : $(DCE_PROCEDIJRES_SOURCE)
$(CC) $(CFLAGS) -c register_logical_nanlc.c
$(CC) $(CFLAGS) -c resolvc_logical_nanm.c
$(CC) $(CFLAGS) -c delete_logical_name.c
$(CC) $(CFLAGS) -c print_ logical_.names.c

#
CLIENT BUILDS
#
$(MACH)/rcgister_client: register_client.o DCE_lns_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/register-.client \
register_client.o DCE_lns_cstub.o $(LIBS)

$(MACH)/print_client: print_client.o DCE_lns_cstub.o
$(CC) $(CFLAGS) -o $(MACH)/print_client \

print_client.o DCE_lns_.cstub.o $(LIBS)
$(MACH)/resolvc_clicnt: resolvc_client.o DCE_lns_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/resolve_client \
resolve_client.o DCE_lns_cstub.o $(LIBS)

$(MACH)/delete_client: dclcte_clicnt.o DCE_lns_cstub.o
$(CC) $(CFLAGS) -o $(MACH)/delete_.client \

delete_client.o DCE_lns_cstub.o $(LI13S)

#
SERVER BUILD
#
$(MACH)/DCE_lns_server: $(server_OFILES) $(DCE_PROCEDURES) DCE_lns_server.c

$(CC) $(CFLAGS) -o $(MACH)/DCE_lns_server DCE_lns_sstub.o \
register_logical_name.o \
resolve_logical_namc.o \
delete_logical_name.o \
print_logical_names.o \
DCE_lns_server.o $(LIBS)

28

Makefile.sun

FILE NAME: Makefile.sun
#
Sun Makefile for the DCE implementation of LNS
#
definitions for this make file
#
MACH = sun

DEBUG = -~
INCENV = -1. -I.. -1/usr/include/reentrant

DEFl = -D_XOPEN_SOURCE -D-_TIMESPEC_T_
DEF2 = -DNO_EXCEPTION_HANDLING -DTRANSARC
DEF3 = -DTRACING -D.POSIX.SOURCE
CFLAGS = -Xa $(DEF1) $(DEF2) $(DEF3) ${ DEBUG} $(INCENV}
LDFLAGS =${ DEBUG}
LIBS = -ldce -Ithread -Insl -Im

PROGRAMS = $(MACH)/DCE_lns_scrver \
$(MACH)/register_client \
$(MACH)/print_client \
$(MACH)/resolve_client \
$(MACH)/deletc_cl icnt

scrvcr_OFILES = DCE_lns_sstub.o DCE_lns_server.o

IDL_SOURCE = DCE_lns.idl
HEADERS = DCE_lns.h
C.SOURCE = DCE_lns_sstub.c DCE. lns_cstub.c
DCE_OBJECTS = DCE_lns_sstub.o DCE_lns__cstub.o
DCE.PROCEDURES = registcr_logical_namc.o \

resolve_logical_name.o \
print_Iogical_names.o \
delete_logical_name.o

DCE_PROCEDURES_SOURCE = register_ logical_namc.c \
print_logical_names.c

IDLCFLAGS = -cc.opt ‘-Xa -D_TIMESPEC_T_ -D_XOPEN_SOURCE’
IDLFLAGS = -v
lDLCMD = id] $(IDLFLAGS) $(lDLCFLAGS)

cc = cc

29

#
COMPLETE BUILD of the application
#
all: local ${ PROGRAMS }

#
Clean
#
clean:

rm -f *.o hp/* DCE_lns_sstub.c DCE_]ns..cstub.c DCE_lns.h

#
LOCAL BUILD of the client application to test locally
#
local: interface register_client.c register_logical_.name.c

$(CC) $(CFLAGS) -D1.OCAL -o $(MACH)/local_register \
register_client.c \
rcgister_logical_ name.c \
$(LIBS)

$(CC) $(CFLAGS) -DL.OCAL -o $(MACH)/local_print \
print_client.c \
print_logical_names.c \
$(LIBS)

$(CC) $(CFLAGS) -DLOCAL -o $(MACH)/local_resolve \
resolvc_client.c \
resolvc_logical_namc.c \
$(LIBS)

$(CC) $(CFLAGS) -DLOCAL -o $(MACH)/local_delete \
deletc_client.c \
delete_logical_namc.c \
$(LIBS)

#
INTERFACE BUILD
#
interface: $(DCE_OBJECTS) $(DCE_PROCEDURES)

$(DCE_OBJECTS): $(IDL_SOURCE)
$(IDLCMD) $(IDL_SOURCE)

30

$(DCE_PROCEDURES): $(DCE.PROCEDUR13S.SOURCE)
$(CC) $(CFLAGS) -c register_logical_nanlc.c
$(CC) $(CFLAGS) -c resolve_logical_name.c
$(CC) $(CFLAGS) -c delete_logical_name.c
$(CC) $(CFLAGS) -c print_logical_namcs.c

#
CLIENT BUILDS
#
$(MACH)/register_client: register_client.o DC13_lns_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/rcgister_client \
rcgistcr_client.o DCE_lns_cstub.o $(LIBS)

$(MACH)/print_client: print_client.o DCE_lns_cstub.o
$(CC) $(CFLAGS) -o $(MACH)/print_client \

print_client,o DCE_lns_cstub.o $(LIBS)
$(MACH)/resolve_client: resolve_client.o DCE_lns_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/resolve_client \
resolve_client.o DCE_lns_cstub.o $(LIBS)

$(MACH)/delete_client: delete_clicnt.o DCE_lns_cstub.o
$(CC) $(CFLAGS) -o $(MACH)/delete_ client \

delctc_client.o DCE_lns_cstub.o $(1-IBS)

#
SERVER BUILD
#
$(MACH)/DCE_lns_server: $(server_OFILES) DCE_lns_server.c $(DCE_PRoCEDURES)

$(CC) $(CFLAGS) -o $(MACH)/DCE_Jns_servcr DCE_lns_sstub.o \
registcr_logical_name.o \
resolve_logical_nanle.o \
delete_logical_nanle.o \
print_logical_names.o \
DCE_lns_server.o $(LIBS)

dclctc_client.c

/* FILE NAME: delete_client.c */
/* This module deletes a logical name in the logical name server, */

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <dce/dce__error.h>
#ifdcf LOCAL
#include <dce/uuid.h>
#cndif /* LOCAL */

#include <stdio.h>
#include “DCE_lns.h” /* header file created by IDL. compiler */

#ifdcf LOCAL
#define rnax_logical_names 100
struct lnt_entry {

logical_name_t user_logical_name;
uuid_t logical_name_object;
int user_count;

} lnt_table-_entry [max_logical_namcs];
#cndif /* LOCAL*/

main (int argc, char *argv[])
{

uuid_t registered..uuid;
logical_namc_t logical_namc;
unsigncd_char_t *string_uuid;
crror_status_t return_status;
unsigned32 dcc_call_status;

32

#ifdef LOCAL
int “,1,

/* Initialize table. */
for (i = O; i <= max_logical_nanlcs; i++)
{ ’

strncpy ((char *) &lnt_tablc._entry [i] .user_logical_name,
II It 1);

uuid_cre~tc_nil (
&lnt_table_entry [i].logical_nan~ e_object,
&dce_call_status);

lnt_tablc_cntry[i] .user_count = O;
}

#cndif /* LOCAL*/

if (argc != 2) {
fprintf(stderr, “Usage: %s logical_nan~e\n”, argv[O]);
exit(l);

} else {
strncpy((char *)logical_name, argv[11, si~eof(logical–name));

}

dclctc_logical_nan~e (logical_name, &return_status);

printf(’’Returned status = %i,h”, return_status);

)

33

delctc_logical_nan~ e.c

/* File N a m e : delete_logical_name.c */
/* Purpose: Delete a logical name entry. */

#include <stdio.h>
#include edce/dce_error.h>
#include <dce/rpcexc.h>
#include <dce/uuid.h>
#include “DCE_lns,.h”
#include “DCE_lns_server.h”

void dclete_logical_name (logical_name, call_ status)
logical_name_t logical_name;
error_ status_t *call_ status;

{
int entry_indcx;
unsigncd32 status;
uuid_t nil_uuid;
unsigned_char_t *string_uuid;

for (entry_index = O ; entry_index < max_logical_names; entry_index++)
{

if (strcmp (
lnt_table_cntry [entry_index] user_ logical_namc,
logical_name) == O) {

I*

* Report the entry being deleted
*I

#ifdef TRACING
printf(’’Dcleting entry #- %i logical_name %s.\n”,

entry_index,
lnt_table_entry [entry_index] .user_logical_ nanlc);

#cndif /* TRACING */
/*

* Convert the logical name object to a string
+/

uuid..to_string (&lnt_.table_entry [entry_indcx] .logical_name_obj ect,
&string_uuid,
&status);

#ifdef TRACING
printf(” uuid string= %s.\n”, string_ uuid);

#cndif J* TRACING */

34

J*

* Free memory
*j

rpc_string_free(&string_uuid, &status);

Strncpy (/* Clear the entry name*/
(char *) &lnt_.table_cntry [entry_indcx].uscr_logical_name,
II II 1);

uuid_cre~te_nil (/* Clear the entry uuid */
&lqt_table_entry [ent~_indcx].logical_ name_object,
&status);

lnt_tablc_entry [entry_index].user-_count = O;

*call_ status = O;
return;

1
)

#ifdcf TRACING
printf(”No matching name to delete for %s.k”, logical_namc);

#cndif /* TRACING */

*call_ status = -1;
return;

}

35

print_client.c

/* FILE NAME: print_client.c */
/* This module causes the server to print out a list of all registered names. */

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <dce/dcc_error.h>
#ifdcf LOCAL
#include <dcc/uuid,h>
#cndif /* LOCAL*/

#include <stdio.h>
#include “DCE_lns.h” /* header file created by IDL compiler */

#ifdcf LOCAL
#define max_logical_names 100
struct lnt_.entry {

logical_namc_t user_logical_name;
uuid_t logical_name_object;
int user_count;

} lnt_tablc_entry [max_logical_names];
#cndif /* LOCAL*/

main (int argc, char *argv[])
{

unsigncd32 dcc_call_status;
logical_namc_t logical_namc;
uuid_t registered..uuid;
crror_status_t return_status;
unsigncd_char_t *string_uuid;

36

#ifdef LOCAL
i nt 1,. .

/* Initialize table. */
for (i = (); i <= max_logical_names; i++)

{
strncpy ((char *) &lnt’_table_entry[i] .user_-logical_namc,

It II 1);
uuid_creat~_nil (

&lnt_table_entry [i].logical_namc_objcct,
&dce_call_status);

lnt_table_entry[i] .user_count = O;
}

#cndif /* LOCAL*/

print_logical_names ();
}

37

print_logical_namcs.c

/* File Name: deletc_logical_nanmc */
/* Purpose: Delete a logical name entry. */

#include <stdio.h>
#include <dce/dcc_error.h>
#include <dce/rpccxc.h>
#include <dce/uuid.h>
#include “DCE_lns.h”
#include “DCE_lns_scrver.h”

void print_logical_.names ()
{

int availablc_name_sl ots;
unsigned32 dce_call_status;
int entry_indcx;
unsignti_char_t *string_uuid;

available_namc_slots = O;
for (cntry_index = O ; entry_indcx < max_logical_names; entry_index++)
{

if (lnt_table_entry [entry_index] .user_count == O)
availablc_name_slots++;

else {
printf(’’Logical Name Table Entry %i.\n”, entry_index);
printf(” logical_namc = %s.b”,

lnt_tablc_entry [entry_index].user_logical_name);
uuid_to_string (/* Translate object uuid to string */

&lnt_table_entry [entry_index].logical_nan~e_.objcct,
&string_uuid, &dce_call_status);

printf(” uuid = Yos.b”, string_uuid);
printf(” user_count = %i.\n”,

lnt_table_entry [entry_index].user...count);
/+

* Free memory allocated to string uuid
+/

rpc_string_free(&string_uuid, &dcc_calI_status);
}

}
printf (“Available names slots= %i.h”, available_. namc_slots);

}

38

rcgistcr_client.c

/* FILE NAME: rcgister_client.c */
/* This module registers a logical names with the logical name server. */

#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <dce/dce_error.h>
#ifdcf LOCAL
#include <dce/uuid.h>
#cndif /* LOCAL*/

#include <stdio.h>
#include “DCE_lns.h” /* header file created by IDL compiler */

#ifdcf LOCAL
#define max_logical_names 100
struct lnt_entry {

logical_namc_t user_logical_name;
uuid_t logical_name_object;
int user_count;

} lnt_tablc_entry [max_logical_names];
#cndif /* LOCAL*/

main (int argc, char *argv[])
{

unsigned32 dce_call_status;
logical_name_t logical_name;
uuid_t registered_uuid;
error_status_t return_status;
unsigned_char_t *string_uuid;

39

#ifdcf LOCAL
int “.1,

/* Initialize table. */
for (i = O; i <= max_logical_names; i++)
{

strncpy ((char *) &lnt_table_entry [i] .user_logical_n an~c,
II II 1);

uuid_creat~_nil (/* Clear table entry */
&lnt_table_entry [i].logical_namc_ob jcct,
&dcc_call_status);

lnt_tablc_cntry [i].user__count = O;
}

#cndif /* LOCAL */

if (argc != 2) {
fprintf(stdcrr, “Usage: %s logical_nameb”, argv[O]);
exit(l);

} Clsc {
strncpy((char *)logical_name, argv[1], sizeof(logical_name));

}

rcgistered_uuid = register_logical_name (logical_ name, &return_status);
if(rcturn_status == O) {

uuid_to_string (®istered_uuid, &string_uuid, &dce._call_.status);
printf(’’uuid string = %s.\n”, string_uuid);
printf(’’Returned s t a t u s = %i.b”, return__status);

} Clsc
if(return_status == -01)

puts(’’Duplicate logical name encountered”);
else

if(return_status == -02)
puts(’’Error creating uuid”);

/*

* Free memory allocated to string_uuid
*J

rpc_string_free(&string__uuid, &dce_call_status);
}

40

rcgistcr_logical_.name.c

/* File Name: rcgister_logical_name.c *I

/* Purpose: Associate a logical name to an object*/

#include <stdio.h>
#includc <dce/dce_error.h>
#include <dce/rpcexc.h>
#include <dce/uuid.h>
#include “DCE_lns.h”
#include “DCE_lns_servcr.h”

uuid_t register_logical_n ame (logical_name, cdl.. SMUS)

logical_name_t logical_namc;
error_status_t *call_status;

{
int new_cntry_index;
static int last_.entry__address;
unsigned32 dcc_call_status;
unsigncd_char_t *string_uuid;

#ifdcf TRACING
puts(’’Registering logical name”);
printf(” Logical name value: %s\n”, logical_namc);

#cndif /* TRACING */

/* Start with a clean slate */
*call_ status = O;

/* Look for duplicates */
new_entry_index = O;
while (strcmp (lnt_table_entry [ncw_entry_.index] .user_logical_namc,

logical_name) != O &
new_entry_index < max_logical_namcs)

{
new_.entry_index++;

}

if (ncw_entry_index < max_logical_names)
{

uuid_t rcturn_uuid;
#ifdef TRACING

printf(’’Duplicate name encountered.h”);
printf(” name = YOs.\n”, logical_name);
printf(” entry = %i.k”, new_entry_indcx);

#cndif /* TRACING */

*call_status = -01;
uuid_create_nil (&return_uuid,

&dce_call_status);
return (return_uuid);

}

/* Look for an empty entry in the table. */

ncw_entry_indcx = O;

while (lnt_tablc_entry [new_entry_indcx] .uscr_count != O &
ncw_entry_index < max_logical_nan~es)

{
ncw_entry_index++;

}
if (new_entry_index < max_logical_names)
{

/* Once wc found an available entry, cram a nil uuid value into it. */
/* This is just for good measure. *J

uuid_create_nil (
&lnt_table_entry [new_ent~_indcx] .logical_nan~e_object,
&dce_call_status);

/* Copy in the user’s logical name. */
strcpy (

(char *) lnt_table_ent~[new_ent~_index] .user_logical_name,
(char *) logical_.name);

lnt_table__entry [new_entry_index] .user_count = 1;

uuid_create (
&lnt_tablc_entry [new_ent~_index] .logical_..name_object,
&dce_.call_status);

42

4

if (dcc_call_status != uuid_s_ok)
{

uuid_t return_uuid;

printf(’’Error creating uuid.b”);

/* We had an error so we need to clear out the table entry. */
strncpy ((char *) lnt_table_entry [ncw_entry_index] .user_logical_n amc,

1! It 1);
lnt_table_~ntry [new_entry_index] .user._count =0;
uuid_create_nil (&return_ uuid,

&dce_call_status);
*call_status = -02;
return (rcturn_uuid);

}
1

printf(’’new_entry_index = %i.k”, new_entw_index);

printf (“Returning uuid for %s.h”, logical_nanm);

uuid_to_string (&lnt_table_entry [new_entry_index] .logical_namc_objcct,
&string_uuid,
&dce_call_status);

printf(’’uuid string = %s.h”, string_uuid);

return (lnt_table_entry [new_ent~_index] .logical_name_object);
}

43

rcsolve_client.c

/* FILE NAME: resolve_client.c */
/* This module uses the Ins server to resolve the logical name input to the */
/* object id, */

#includc estdlib,h>
#include <string.h>
#include <stdio.h>
#include edce/dce_error.h>
#ifdef LOCAL
#include <dcc/uuid.h>
#endif /* LOCAL */

#include <stdio.h>
#include “DCE_lns.h” /* header file created by IDL compiler */

#ifdef LOCAL ~
#define max_logical_names 100
struct lnt_entry {

logical_nanle_t user_logical_name;
uuid_t logical_name_object;
int user_count;

} lnt_tablc_entry [max_logical_.names];
#cndif /* LOCAL*/

main (int argc, char *argv[])
{

,

unsigned32 dce_call_status;
logical_name_t logical_name;
uuid_t registered.uuid;
crror_status_t return_status;
unsigned_..char_t *string_uuid;

44

#ifdcf LOCAL
int “.1,

/* Initialize table. */
for (i = O; i <= max_logical_nanles; i++)

{
strncpy ((char *) &lnt_table_entry [i] .user_logical_n ame,

It II 1);
uuid_crcat~_nil (

&lnt_table_entry [i].logical_nanm–object,
&dce_call_status);

lnt_table_entry [i].user_count = O;
}

#cndif /* LOCAL*/

if (argc != 2) {
fprintf(stderr, “Usage: %s logical_namc\n”, argv[o]);
exit(l);

} else{
strncpy((char *)logical_name, argv[1], sizcof(logical_name));

}

rcgistered_uuid = resolve_logical_namc (logical_ nanlc, &return_status);

uuid_to_string (®istered_uuid, &string_uuid, &dcc_call_status);
printf(’’Logical name= %s.h”, logical_namc);
printf(” resolves to uuid string = %s.\n”, string_uuid);
printf(” Returned status= %i.b”, return_status);
/*

* Retrun memory allocated to string_uuid
*J

rpc_string_frec(&string_uuid, &dce_call_status);
}

45

rcsolvc_logical_namc.c

/* File Name: resolve_logical_name.c */
/* Purpose: Resolve a logical name entry. */

#include <stdio.h>
#include <dce/dce_error.h>
#include <dce/rpcexc.h>
tincludc <dce/uuid.h>
#includc “DCE_lns.h”
#include “DCE_lns_server.h”

uuid_t resolve_logical_name (logical_name, call_ status)
logical_name_t logical_namc;
error_status_t *call_status;

{
uuid_t nil_uuid;
i nt cntry_indcx;
unsigned32 dce_call_status;

for (entry_index = O ; entry_index < max_logical_.names; entry_ index++)
{

if (strcmp (/* Check for a match */
lnt_tablc_entry [entry_index].user_logical_namc,
logical_name) == O)

{
#ifdcf TRACING

printf(’’Received query for logical name= %s.\n”,
lnt_table_entry [ent~_index].uscr_logical_namc);

#cndif /* TRACING */

*call_status = O;
return (lnt_table_entry [entry_index].logical_namc_object);

}
}

#ifdcf TRACING
printf(”No match found for logical name= %s.\n”, logical_namc);

#cndif /* TRACING */

*call_status = -1;
uuid_creatc_nil (&nil_uuid, &dce._call_status);
return (nil_uuid);

)

46

APPENDIX C
DESCRIPTION OF THE ICE CREAM APPLICATION

Introduction

This appendix describes the Ice Cream application. It discusses how to build and run it, and what
administrative setup is required to run it. It is assumed that you already have a properly configured
and running DCE on the node(s) on which you run this sample application.

Description

The Ice Cream application allows the vendor and customer to share information about the calories
pcr serving of flavors of ice cream. The vendor uses the server process to define a flavor and
specify the number the of calories per serving. The customer users the client process to query the
servers as to how many calories per serving a specific flavor has.

This application demonstrates the use of object uuids to identify between different servers offering
the same servers. In our case each server is offering the ice cream service for a different flavor. The
application uses an ACF file to spcxify implicit binding. This allows the client process to select the
specific instance of the server process to use.

The server process uses the LNS application described in Appendices A and B to assure that only
one server is running for each flavor. The LNS server uses an interrupt handler to clean up the LNS
table, CDS and end point map should it be terminated.

The client process makes use of the calls rpc_ns_in~port_binding_{ begin, next and done } to select
the correct server.

The ice cream server supports a single function:

calories returns the number of calories for the flavor

This server function is coded in its own C file.

Administrative setu~

The ICC Cream server needs to have the LNS server running in the local ccl].

The Ice Cream server creates a CDS entry for the ice_cream_group in directory
/. :/subsys/HP/sample-apps. It also adds a member to this group for its flavor. Therefore the
permissions for the operator of the server must allow write permission to this directory.

47

Build Process

This sample comes with two makefiles: Makefile.hp and Makefilc.sun. Makefilc.hp should be used
on HP platforms. It places the executablcs in the hp subdirectory. Makcfile.sun should be used on
Sun platforms. It places the executable in the sun subdirectory.

The flag -DTRACING is define by default in the makefi]es. Turning this flag off will greatly
reduce the number of displays printed by the LNS server.

Runninc theserver and client~

To start the server enter:

<MACHTYPE>/server <flavor> <calories>

To query the number of calories in a flavor enter:

<MACHTYPE>/client <flavor>

48

APPENDIX D
SOURCE AND MAKEFILES LISTINGS FOR THE ICE CREAM APPLICATION

Makcfilc.hp

FILE NAME: Makefile.hp
#
#HP Makefile for the ice_crcam application
#
definitions for this make file
#
MACH = hp

DEBUG = -g
INCENV = -I. -1.. -1/usr/include/reentrant
ANSI.FLAGS = -Aa -D_POSIX_SOURCE
HP_FLAGS = -D_REENTRANT -DTRACING

CFLAGS = ${ DEBUG] ${ ANSI_FLAGS} ${ HP_FLAGS} ${ INCENV}
LDFLAGS = ${ DEBUG } -Wl,-a,archivc
MIPS ULTRIX: DCE, internationalization, DECnet
LIBS = -lbb -Idce -lm -It--r

APPL = ice_cream
IDLCMD = id] -v
cc = cc

#
COMPLETE BUILD of the application.
#
all: interface $(MACH)/client $(MACH)/server

#
Clean
#
clean:

rm -f *stub.* *.o $(MACH)/* $(APPL).h

49

#
INTERFACE BUILD
#
intcrfacc: $(APPL).h $(APPL)_cstub.o $(APPL)_sstub.o
$(APPL).h $(APPL)_cstub.o $(APPL)_sstub.o: $(APPL).idl

$(IDLCMD) $(APPL).idl

#
CLIENT BUILD
#
$(MACH)/client: client.o $(APPL)_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/client client.o \
$(APPL)_cstub.o ../LNS/DCE_lns_ cstub.o $(LIBS)

client. o: client.c
$(CC) $(CFLAGS) -c client.c

#
SERVER BUILD
#
$(MACH)/server: $(APPL).h server.o calories.o \

$(APPL)_sstub.o
$(CC) $(CFLAGS) -o $(MACH)/server server.o \

calories.o . ./LNS/DCE_lns__cstub.o \
$(APPL)_sstub.o $(LIBS)

server.o: server.c
$(CC) $(CFLAGS) -C server.c

50

Makefile.sun

FILE NAME: Makefile.sun
#
Sun Makefile for the ice_cream application
#
definitions for this make file
#
MACH = sun

APPL = ice_cream
INCENV = -1. -I..
IDLCFLAGS = -cc.opt ‘-Xa -D_XOPEN_SOURC13 -D_TIMESPEC_T_’
IDLFLAGS = -V
IDLCMD = id] $(IDLFLAGS) $(IDLCFLAGS)
LIBDCE = -ldce # OSIll: DCE libraries
MIPS ULTRIX: DCE, internationalization, DECnet
LIBS = $(LIBDCE) -Ithread -lnsl -lm
DEF1 = -D_XOPEN_SOURCE -D_TIMESPEC_..T_ -DTRANSARC
DEF2 = -DTRACING -D_POSIX_SOURCE
CFLAGS = -g -Xa $(DEF1) $(DEF2) $(INCENV)
cc = cc

#
COMPLETE BUILD of the application.
#
all: interface $(MACH)/client $(MACH)/server

#
Clean
#
clean:

rm -f *stub.* *.o $(MACH)/* $(APPL).h

#
INTERFACE BUILD
#
interface: $(APPL).h $(APPL)_cstub.o $(APPL)_sstub.o
$(APPL).h $(APPL)_cstub.o $(APPL)_sstub.o: $(APPL).idl

$(IDLCMD) $(APPL).idl

51

#
CLIENT BUILD
#
$(MACH)/client: client.o $(APPL)_cstub.o

$(CC) $(CFLAGS) -o $(MACH)/client client.o \
../LNS/DCE_lns_cstub.o \
$(APPL)_cstub.o $(LIBS)

client.o: client.c .
$(CC) $(CFLAGS) -c client.c

#
SERVER BUILD
#
$(MACH)/server: $(APPL).h server.o calorics,o \

$(APPL)_sstub.o
$(CC) $(CFLAGS) -o $(MACH)/server server.o \

calories.o . ./LNS/DCE_lns_cstub.o \
$(APPL)_sstub.o $(LIBS)

server.o: server.c
$(CC) $(CFLAGS) -c server.c

52

calories.c

/* FILE NAME: calories.c */
/* PURPOSE: returns the number of calories per serving for the*/
/* servers flavor. +/

cxtcrn calorics_pcr_serving;
int calories ()
{
#ifdcf TRACING

printf(’’lncoming call received.h”);
#cndif /* TRACING */

rcturn(calories_per_serving);
}

53

client.c

/* FILE NAME: client.c */
/* Purpose: Client of’ the ice_cream application. */

#include <stdio.h>
#include <stdlib.h>
#include “ice_cream.h”
#include “../LNDCE_lnsnh”h”
#include “../check_statuh”h”

#define STRINGLEN SO

main(argc, argv)
int argc;
char *argv[];

{

rpc_binding_handle_t binding_h;
long cal ories_per_serving;
unsigncd_char_t *ep_str;
char entry._name[STRINGLENl;
logical_name_t flavor;
rpc_ns_handle_t import_contex~
unsigncd_char_t *objcct_uuid;
unsigned_char_t *net;
unsigned_char_t *netopt;
unsigncd_char_t *protseq;
uuid_t registered_uuid;
error_status_t return_status;
unsigncd32 status;
unsigned_char_t *string_uuid;
unsigncd_char_t *string_binding;

if (argc != 2) {
fprintf(stdcrr, “Usage: %s flavorh”, argv[O]);
exit(l);

) Clse {
strncpy((char *)flavor, argv[1], sizeof(flavor));

}

54

/*

* Dctcrminc object UUID for the flavor supplied
*j

rcgistcrcd_uuid = resolve_logical_nanm (flavor, &return_status);
if(return_status != O) {

puts(’’Unable to locate flavor in flavor data base.”);
puts(’’Clicnt terminated.”);
exit(- 1);

}

I*

* Convert the object UUID to a string
*

* NOTE: We do not free the string here.
* a positive id of the correct server.
+/

We will use it later to make

uuid..to..string (®istered_uuid, &string_uuid, &status);
#ifdcf TRACING

printf(’’l.ogical name= %s.h”, flavor);
printf(” resolves to uuid string = %s.h”, string_uuid);
printf(” Returned status= %i.b”, return_status);

#cndif /* TRACING */

strcpy(cnt~_name, “/. :/subsys/HP/sample-apps/ice_cream_”);
strcat(cntry_namc, argv[1]);

#ifdcf TRACING
printf(’’Fmtry Name= %s.b”, entry_name);

puts (“Calling rpc_ns_binding_import_begin. “);
#cndif /* TRACJNG */

55

/* rpc_ns_binding_import_bcgino--
*

* Contact thedirectory service todetcrmine the location information
* for the server. This call caches information from the directory
* entry named into a local database. We can then walk through the
* cached information in the following loop.
*

* The first parameter is the syntax to use; in the first release of DCE
* there is only one supported syntax (the default), so usc it. The
* second parameter is the entry name to look under; it was created
* above. If NULL is passed in as the entry name, the environment
* variable RPC DEFAULT_ENTRY will be used as an entry name instead—
* (this is done in the code below). The third parameter is the client
* interface specification, with the UUID from the IDL file; this is
* used to identify the server in the name service. The fourth
* parameter is used to specify an object UUID if the server exports
* multiple objects; this server does not export multiple objects, so
* NULL is used, The fifth parameter is returned by the call; it points
* to an opaque data structure holding context information used by the
* rpc_ns_binding_import_nexto routine as it walks through the
* information retrieved. The last parameter is the DCE error status.
*/

rpc_ns_binding_import_bcgin(/* set context to import binding handles */
rpc_c_ns_syntax_default, /* use default syntax */
(unsigned_char_t *)entry_namc, /* begin search with this name */
icc_crcam_v 1 _O_c_ifspcc, /* interface specification (ice_cream.h) */
NULL, /*no optional object UUID required */
&imporl_contcxt, /* import context obtained. */
&status

);
CHECK_STATUS(status, “Can’t begin import:”, RESUME);

56

while(l) {
/* rpc_ns_binding_import_nexto --

*

* Attempt to import a binding for the server. The first parameter
* is the context returned by the import_bcgin call above. The
* second parameter is a binding handle data structure that will be
* allocated. This application must free the binding handle after
* wc arc done with it. The last parameter is the DCE error status.
*

* This call will randomly return one of the bindings found in the
* directory (if there are more than one). It returns the status
* rpc_s_n~_more_bindings when the bindings have been exhausted.
*/

#ifdcf TRACING
puts(’’Calling rpc_ns_binding_import_ncxt,”);

#cndif /* TRACING */

/* import a binding handle*/rpc_ns_binding_im port_next(
import_contcxt, /* context from rpsc_ns_binding_import begin */
&binding_h, /* output binding handle*/
&status

);
if(status != rpc_s_ok) {

if(status == rpc_s_no_more_bindings) {
puts(’’Can’t import a binding handle: Out of bindings.”);
puts(’’Program abort.”);
exit(- 1);

} else{
CHECK_STATUS(status, “Can’t import a binding handle:”, RESUME);
break;

1
}

J*

* Perform application specific selection of binding handle.
*/

#ifdcf TRACING
puts(’’Calling rpc_binding_to_string_binding.”);

#cndif /* TRACING */
rpc_binding_to_string_binding (/* convert binding information */

binding_h,
&string_binding,
&status

);
CHECK_ STATUS(status, “Can’t get string binding:”, RESUME);

57

#ifdcf TRACING
puts(’’Calling rpc_string_binding_ parse.”);

#cndif /* TRACING */

rpc_string_binding_.parse(/* get components of string binding */
string_ binding, /* the string of binding data */
&object_uuid, /* an object UUID string is obtained */
&protscq, /* a protocol sequcncc string IS obtained
&nct, /* a network address string is obtained */
&ep_str, /* an endpoint string is obtained */
&nctopt, /* a network options string is obtained */
&status

);
CHECK_ STATUS(status, “Can’t parse string binding:”, RESUME);

/*

* Free the memory allocated for stuff we do not need.
*/

#ifdcf TRACING
printf(’’Calling rpc_string_frec for string_binding = %s.\n”,

string_binding);
#cndif /* TRACING */

rpc_string_free(&string_binding, &status);
#ifdcf TRACING

printf(’’Objcct uuid = %s.h”, object_.uuid);

printf(’’Calling rpc_string_free for pmtscq = %s.\n”, protseq);
#cndif /* TRACING */

rpc_string_free(&protseq, &status);
#ifdcf TRACING

printf(’’Calling rpc_string_frcc for net = %s.k”, net);
#cndif /* TRACING */

rpc_string_free(&net, &status);
#ifdcf TRACING

printf(’’Calling rpc_string_frcc for for ep_str = %S.h”, ep_str);
#cndif /* TRACING */

rpc_string_free(&ep_str, &status);
#ifdcf TRACING

printf(’’Calling rpc_string-_free for nctopt = %s.in”, nctopt);
#cndif /* TRACING */

rpc_.string_free(&nctopt, &status);

if(strcmp(object_uuid, string_uuid) == O) {
#ifdcf TRACING

puts(’’Match found freeing object uuid.”);
#cndif /* TRACING */

58

rpc_string_free(&object_uuid, &status);
#ifdef TRACING

puts(’’Frecing string_uuid.”);
#cndif /* TRACING */

rpc_string_frec(&string_uuid, &status);
global_binding_handle = binding_h;
break;

}
else {

#ifdef TRACING
puts(’’Match NOT found freeing object uuid.”);

#cndif /* TRACING */

rpc_string_frcc(&objcct_uuid, &status);
#ifdcf TRACING

puts(’’Freeing binding handle.”);
#cndif /* TRACING */

rpc_binding_free(/* free binding information not selected */
&binding_h,
&status

);
CHECK_ STATUS(status, “Can’t free binding information:”, RESUME);

}
)/* end while */

#ifdcf TRACING
puts (“Calling rpc_ns_binding_import_done. “);

#endif /* TRACING */

rpc_ns_binding_import_donc(/* done with import context */
&import_context, /* obtained from rpc_ns_import_binding_bcgin */
&status

);
CHECK_ STATUS (status, “rpc_ns_binding-in~port–done failed: “, RESUME);

#ifdcf TRACING
puts(’’Calling calories per serving.”);

#cndif /* TRACING */

calorics_per_serving = calorieso;
printf(’’Calorics per serving for flavor %s = ~Oi.h”,

flavor,
cal ories_pcr_serving);

}

59

icc_crcanl.acf

/* FILE NAME: ice_crean~.acf */
/* This acttributc configuration file is used in conjunction with the */
/* associated IDL file (ice_cream.idl) when the IDL compiler is invoked. */
[
in~plicit_handlc(handle_t global_ bindinghandle) /* usc implicit binding method */
1
interface ice_creanl
{
}

60

icc_crcam .idl

/* FJLE NAME: ice_crean~.idl */
I /* brackets enclose attributes*/
uuid(a703ab82-ae09- 1 lcd-9dl l-080009786 a45), /* universal unique identifier*/
version(l .0) /*version ofthis interface */
] interface icc_cream /* interface name *J

{
/************************ Data Typ Dcc]arations *************************/

/************************ procedur~Dcc]arations *************************/

long calories (); /* Return calories */

}/* end of interface definition*/

server.c

/* FILE NAME: server.c */
/*Purpose: This program implements theicc._cream interface*/

#ifdef TRANSARC
#includc <sys/machsig.h>
#cndif I* TRANSARC */

#include <signal.h> /* For signal handler*/
#include <pthread.h> /* POSIX threads facility*/
#include <unistd.h> /* Standard POSIX defines */
#include <stdlib.h> /* Standard POSJX defines */
#include <string.h> /* str*() routines */
#include <stdio.h>
#include <dce/dcc_error.h>
#include <dce/rpcexc.h>
#includc edcc/uuid.h>
#include <ctypc.h>
#include eerrno.h>
#include “ice_crcam.h” /* header created by the IDL compiler*/
#include “../LNDCE_lnsnh”h” /* LNS header created by IDL compiler */
#include “ ../chcck_status.h” /* contains the CHECK_STATUS macro *I

#define STRINGLEN 50

/*

* This server is a threaded process. To properly handle user-generated
* (asynchronous) signals wc spawn a new thread that will use the sigwaito
* CMA routine to await the receipt of an asychrormus signal. When such a
* signal comes in, the server is made to shut down gracefully.
*/

pthread_addr_t sigcatch(pthread_addr_t arg);

/*

* Declare string routines
+/

char *strcpyo;
char *strcato;

i nt calories_pcr_serving; /* supplied as a paramtcr */
logical_namc_t flavor; /* flavor name supplied as parameter */

62

main (argc, argv)
int argc;
char *argv[];

{

char annotation[STRINGLEN]; /* annotation for endpoint map */
rpc_binding_vector_t *binding_veclor; /* binding handle list (rpcbase.h) */
unsigned32 dce_call_status;
char entry_name[STRINGLEN]; /* name service entry name */
char group_nan~e[STRINGLEN]; /* name service group name */
int 1,“.

uuid_vector_t obj_uuid_vector;
rpc_protseq_vector_t *protseq__vector; /*protocol sequcncc list(rpcbasc.h)*/
uuid_t registered..uuid; /* object id for our logical name */
crror_status_t return_status;
pthread_t sig_thread; /* Thread id of signal handler*/
unsigncd32 status; /* error status (nbase.h) */
unsigned_ char_t *string_binding;
unsigned_char_t *string_uuid;

/********************** VALIDATE]NPUT PARMET’ERS ***********************/

if(argc != 3) {
puts(’’Usage is server <flavor> <calories_per-serving> .\n”);
puts(’’Server terminated.\n”);
exit (-l);

}
calorics_per_serving = atoi(argv[2]);
if(calories_per_serving == @ {

puts(’’Usage is server <flavor> <calories_pcr-serving> .\n”);
puts(” <calories_per_serving> must be an integer value.\n”);
printf(” atoi error encountered = %i.b”, errno);
puts(’’Server terminated.h”);
exit (-2);

)

63

/************************* OBTAIN uu]~ FROM IJ(JCJ *************X***********/

stmcpy((char *)flavor, argv[1], sizeof(flavor));
#ifdcf TRACING

printf(’’Obtaining uuid for object %s.\n”, flavor);
#cndif /* TRACING *J

registered_uuid = rcgister_logical_name (flavor, &return__status);
if(rcturn_status != O) {

puts(’’Unable to register flavor. -- Possibly a duplicate.\n”);
puts(” Server terminating.”);
exit(- 1);

1
uuid_to_string (®istered_uuid, &string_uuid, &dcc_call__status);

#ifdcf TRACING
printf (“flavor %s registered with uuid %s\n”, flavor, string_uuid);
printf(’’Returned status= %i.\n”, return_status);

#cndif /* TRACING */

/* initialize uuid vector for rpc_ep_registcr call */—
obj_uuid_vector. count = 1;
obj_uuid_vcctor. uuid [O] = ®isterd_uuid;

/*********$c*ak*aK***** START CJ(jNAL CATCH]NG THREAD *********************/

/* pthrcad_createo --
*

* Create a new thread to perform asynchronous signal handling. The
* pthread_create call spawns a ncw thread of execution within this
* process. The first paramter is the address of the thread information
* data structure; pthread_creatc will fill this in as a result
* paramter. The second paramter is the attributes to be used when
* creating the new thread; the defaults are fine in this case. The
* third paramter is the name of the function to call when the new
* thread has been created; when this function returns the thread will
* terminate. The fourth paramter is used to pass information to the
* thread routine; the sigcatch routine does not need any additional
* information, so a NULL pointer is passed in.

i~[pthread__create(&sig_thread, pthread_attr_-default, sigcatch, 0) <0) {
J* pcrroro --

*

* Print an error message using the string passed in and the current
* value of the global UNIX error value, errno. The pthread_creatc
* call will set errno if it fails.
*J

pcrror(’’Cannot start signal catching thread”);
} else{

64

J* pthread..yieldo --
*

* Force a context switch from this thread to another. In this case
‘ * there is only the one other thread, the one just spawned. Yeild
* here to allow the signal thread to set itself up before resuming
* with registration of the server.
*

* NOTE: This does not guarantee that the signal catching thread
* will run until it blocks (until the sigwaito call, sec below).
*J

pthread_yieldo;
)

/**** ********************** R~(J]sTER]NTERFA~E * * * * * * /

/* rpc_server_register_if
*

* Register the interface definition and manager entry point vector with
* the RPC runtime. This application does not usc type UUIDS (an
* advanced feature) so specify a nil manager type UUID.
*J

#ifdcf TRACING
puts(’’Registering interface (rpc_server-register_ if) . ..”).

#cndif /* TRACING */
rpc_server_register_if(

ice_cream_v 1 _O_s_ifspcc, /* interface specification (icc_cream.h) */
NULL, /*No type uuid */
NULL, /* Use defualt end point manager */
&status

);
CHECK_STATUS(status, “Can’t register interface:”, ABORT);

65

/**************** CREATJNG SERVER ~INDING INFORMATION * * * * * * * * * * * * * * * * /

/* rpc_server_use_all_protseqso --
*

* Specify that the RPC runtimc should usc all protocol sequences for
* this application (both UDP/IP and TCP/IP are currently supported).
* This allows the client the flexibility of choosing whichcvcr protocol
* sequence it prefers; it also uses more system resources on the server
* but that’s OK for purposes of demonstration.
*

* The first parameter specifies the maximum number of concurrent remote
* procedure call requests that the server can accept. This server
* wishes to allow only 1 call at a time. The second parameter is the DCE
* error status.
*/

#ifdcf TRACING
puts(’’Requesting all protocol sequences (rpc_.servcr_usc_.all_protseqs) . ..”).

#cndif /* TRACING */

rpc_server_use_all_protseqs(/* use all protocol sequences */
1, /* queue size for calls= 1 */
&status /* status returned from ths call */

);
CHECK_STATUS(status, “Can’t register protocol sequences:”, ABORT);

I* rpc_scrver_inq_bindings
*

* Get the bindings handles. The binding information (binding
* vector return argument binding_vcctor) is required for registration
* with the endpoint mapper and the name service.
*/

puts(’’Obtaining server binding information (rpc_server_inq_bindings) . ..”).
rpc_server_inq_bindings(/* get all binding information for server */

&binding_vector,
&status

);
CHECK_ STATUS(status, “Can’t get binding information:”, ABORT);

66

.

/**************************** pRINT~INDINGs ***************************X*/

#ifdcfTRACING
puts(’’Bindings:h”);

for (i =O; i< binding_vector->count; i++){
/* Convert binding handle to a string */
rpc_binding_to_string_binding(/* convert bindings to a string */

binding_vcctor->binding_.h[i],
&string_binding,
&status

);
CHECK_STATUS(status, “Cannot get string binding: “, ABORT);
printf(” Binding #%i = %s\n”, i, (char *)string_binding);

/* Free string binding*/
rpc_string_free(&string__binding, &status);
CHECK_STATUS(status, “Cannot free string binding:”, ABORT);

}
#cndif J* TRAC]NG ~/

/**** *********************** ADVERTISE SERVER ***** *********************X/

strcpy(entry_name, “/.:/subsys/HP/sample-apps/ice_cream_”);
strcat(entry_namc, argv[1]);

#ifdcf TRACING
printf(’’Entry Name= %s.b”, entry_name);
puts(’’Exporling entry to name service data base (rpc_ns_binding_export) . ..”).

#cndif /* TRACING */

67

p+
*
*
*
*
*
*
*
*
*
*
*

rpc_ns_binding_exporto --

Export the binding vector and interface specification to the name
server. Register in the name service under the host-specific entry
name just computed above. The first parameter is the syntax to use;
in the first release of DCE there is only onc supported syntax. The
second parameter is the entry name to look under; it was created
above. The third parameter is the server interface specification,
with the U UID from the IDL file. The fourth parameter is used to
specify an object UUID if the server exports multiple objects; this
server dots not export multiple objects, so NULL is used.

*/

rpc_ns_.binding_cxport(/* export to a name service database */
rpc_c_ns_s yntax_dcfault, /* syntax of entry name (rpcbase.h) */
(unsigned_char_t *)entry_name, I* name of entry in name service */
ice_crcam_v 1 _O_s_ifspec, /* interface specification (ice_creanl.h) */
binding_vector, /* binding information */
&obj_uuid_vector, /* export registered object UUIDS */
&status

);
CHECK_STATUS(status, “Can’t export to name service database:”, ABORT);

strcpy(group_namc, “/.: /subsys/HP/samplc-apps/ice_crcam_group”);
#ifdcf TRACING

printf(’’Group Name= %s.h”, group_namc);
#cndif 1* TRACING *I

rpc_ns_group_nl br_add(/* add as member of name service group */
rpc_c_ns_syntax_default, /* syntax of group name (rpcbase.h) */
(unsigncd_char_t *)group_name, /* name of group in name service */
rpc_c_ns_syntax_default, /* syntax of member name (rpcbase.h) */
(unsigncd_char_t *)entry_name, /* name of member in name service */
&status

);
CHECK_STATUS(status, “Can’t add member to name service group:”, RESUME);

/**** ********************** MANAGE ENDPOINTS ***** **********************/

strcpy(annotation, “.Icc Cream / “);
strcat(annotation, argv[1]);

68

/* rpc_ep_register
*

* Register the interface with the local endpoint mapper. This allows
* connections by applications using this interface without specifying a
* port (i.e., using a partially-bound binding handle).
*
*J

rpc_ep_rcgistcr(/* add endpoints to local endpoint map */
icc_cream_v 1 _O_s_ifspec, /* interface specification (icc_crcam.h) */
binding_vcctor, /* vector of server binding handles */
&obj_uuid_vector, /* export registered object UUIDS */
(unsigncd_char_t *annotation, /* annotation supplied (not required) */
&status

);
CHECK_STATUS(status, “Can’t add endpoints to local endpoint map:”, RESUME);

/* Free binding vector */
rpc_binding_vector_free(/* free server binding handles */

&binding_vector,
&status

);
CHECK_STATUS(status, “Can’t free server binding handles:”, RESUME);

/***************** LISTEN FOR REMOTE PROCEDURE CALLS *****************/
/*
* Wrap the server listen call with a TRY block to catch any exceptions
* raised by the RPC server runtimc. In addition if an asynchronous
* signal is received (by the sigwait thread) the listen will be
* terminated via the rpc_mgmt_ interface.
*/

TRY { /* thread exception handling macro */
#ifdef TRACING

puts(’’Listening for remote procedure calls...”);
#cndif /* TRACING */

rpc_servcr_listen(/* Listen for a client’s call */
1, /* process one remote procedure call at a time */
&status

);
CHECK_STATU S(status,

} FINALLY{

“rpc listen failed:”, ABORT);

69

/*

* Remove this server from the namcspacc, including from any profile
* or groups it’s registered in. Also unexport the bindings and
* unregistcr the endpoints with the RPC runtime.
*

* NOTE: Not all servers will want to unregister from the name
* service. If the server is expected to come up again right away
* it makes more sense to leave the server entries in CDS. However
* if the server is only running now and again the entry should bc
* removed so clients do not try to contact a server that is no
* longer listening for requests.
*I

#ifdef TRACING
puts(’’Unregistering from NSI...\n”);

#cndif /* TRAC]NG */
/*

* Unrcgister this service from the namespace.
+/

rpc_ns_binding_uncxport(
rpc_c_ns_syntax_ default, /* default syntax */
(unsigned_char_t *)entry_name,
icc_cream_v 1 _O_s_ifspec, /* intcrfacc specification (DCE_lns.h) */
&obj_uuid_vector, /* export registered object UUIDS */
&status); /* error return */

CHECK_STATUS(status, “rpc_ns_binding_uncxport error: “, RESUME3);

#ifdcf TRACING
puts(“Unregistering endpoints and intcrfacc...\n”);

#cndif /* TRACING */
1*

* Unrcgister the interface and endpoints with the RPC runtimc.
*/

rpc_servcr_inq_bindings(
&binding_vector,
&status

);
CHECK_ STATUS(status,
rpc_ep_unregister(

icc_crcam_v 1 _O_-s_

/* get binding information */

“Can’t get binding information:”, RESUME);

ifs~ec, /* interface specification (DCE_lns.h) */
binding_vector, /* this server’s bindings */
&obj_uuid_vector, /* export registered object UUIDS */
&status /* error return */

);
CHECK_STATUS(status, “Endpoint unrcgister failed: “, RESUME);

70

t

rpc_server_unregistcr_if(
icc_cream_v 1 _O_s_ifspcc4* interface specification (DCE_lns.h) */
NULL, /*No object UUID. */
&status /* error return */

);
CHECK_STATUS(status, “Interface unrcgistcr failed: “, RESUME);

/* rpc_binding_vector_free
*

* We are done with the binding_vcctor so wc can free the space.
*I

rpc_binding_vector_ free(/* free set of server binding handles */
&binding_vector,
&status

);
CHECK_STATUS(status, “Can’t free binding handles and vectork”, ABORT);
J*

* Remove our entry from the logical name service data base
*/

dclcte_logical_name (flavor, &status);
if (status != O) {

puts(’’Error deleting flavor name”);
}

)
13NDTRY
I*

* We got here either because the server was told to stop listening or
* an exception was raised. Some manager functions may still be running
* in separate threads. A robust server should either wait for these
* threads to complete gracefully or tell them to terminate (cancel).
*/

exit(0);
) /* END SERVER INITIALIZA~ON */

71

J* sigcatcho --
*

* Catch and handle asynchronous signals for the server. This function runs
* in a separate thread. It awaits receipt of an asynchronous signal using
* the CMA sigwait call. When one of the signals this thread is waiting for
* is rcceivcd by the process this thread will be scheduled. It then tells
* the server to stop listening, causing the RPC runtime to return from the
* rpc_servcr listeno routine once all the currently running RPC have
* completcd~ This thread then exits. When rpc_scrver_ listcno returns the
* server cleans up its entries from the name space and then exits.
*/

pthrcad_addr_t sigcatch(pthrcad-_addr_t arg)
{

sigsct_t mask; /* signal values to wait for */
int signo; /* actual signal received */
unsigned32 status; /* returned by DCE calls */

/* sigcmptyseto --
*

* Initialize the signal set pointed to by the first parameter. When
* initialized the mask includes no signals. Use sigaddseto below to
* add individual signals to the mask. The mask is used to tell
* sigwaito which signals to wait for. Any other signals will be
* ignored.
*/

sigcmptyset(&m ask);

/* sigaddseto --
*

* Add a signal value to a signal mask. The first parameter is the mask
* which should have been initialized at some point. The second
* parameter is a signal number which is to bc added to the signal mask.
* The mask parameter is modified to include the signal and returned,
*/

sigaddsct(&mask, SIGHUP);
sigaddsct(&mask, SIGINT);
sigaddset(&mask, SIGTERM);

72

b

#ifdcf _POSIX_SOURCE
J*
* POSIX defines the following user-defined signals. They are also
* listed as process-terminating asynchronous signals, so make sure to
* catch them. There are other process-terminating signals your
* application may need to catch as well, including SIGALRM, SIGPROF,
* SIGDIL, SIGLOST.
*

* The asynchronous non-terminating signals SIGCONT, SIGPWR and SIGWINDOW
* can also bc caught if desired, but should not cause server process
* termination.
*J

sigaddset(&mask, SIGUSR1);
sigaddset(&mask, SIGUSR2);

#cndif /* _POSIX_SOURCE */

/* sigwaito --
*

* Wait for the receipt of a signal (block this thread). The first
* argument is the signal mask created above. Only those signal values
* included in the mask will bc waited for. Any Other signals Will bc
* ignored (will cause process termination or whatever their behavior is

* defined to be).
*
* If no threads were Sigwaitoing for the asynchronous signals defined
* in the nlz~k above and such a signal were received, the process would

* dic immediately without giving the server a chance to unregister its
* bindings with the endpoint mapper. Using sigwaito is the only way
* to catch these asynchronous signals and have the opportunity to clean
* up before exiting.
+/

signo = sigwait(&mask);
#ifdcf TRACING

printf(’’Signal %d received! Cleaning up...\n”, signo);
#cndif /* TRACING */

73

/* rpc_mgml_stop_servcr_lisleningo --
*

* Stop the server from listening for more RPC requests. The first
* parameter is a binding handle indicating the server which should stop
* listening; a NULL value for this parameter means to stop this server
* from listening. The final parameter is the DCE error status.
*

* This call causes the server runtimc to exit from rpc–server_listeno
* after all currently active RPCS run to completion. Note that no more
* RPCS will be received once the rpc_.server–listeno terminates. If
* any currently active RPCS don’t complete in a timely manner, another
* signal will kill the server since wc will no longer have a thread to
* catch asynchronous signals!
*I

rpc_mgmt_stop_servcr_listcning(NUI.I., &status);
#ifdcf TRACING

puts(’’chccking return code.\n”);
#cndif /* TRACJNG */

CHECK_STATUS(status, “rpc_mgmt_stop-server error: “) RESUME);
}

74

